Skip to main content

Single Cell Deformation for Understanding Progression

PGR-P-179

Key facts

Type of research degree
PhD
Application deadline
Ongoing deadline
Country eligibility
International (open to all nationalities, including the UK)
Funding
Competition funded
Supervisors
Professor Stephen Evans
Schools
School of Physics and Astronomy
Research groups/institutes
Molecular and Nanoscale Physics
<h2 class="heading hide-accessible">Summary</h2>

The deformability of a cell is the direct result of a complex interplay between the different constituent elements at the subcellular level, coupling a wide range of mechanical responses at different length-scales. Changes to the structure of these components can also alter cell phenotype, thus the critical importance of cell mechano-response for diagnostic applications. The response to mechanical stress depends strongly on the forces experienced by the cell. Here we are interested in how cell deformability in both shear-dominant and inertia-dominant microfluidic flow regimes can be used to probe different aspects of the cell structure. In the inertial regime we follow cellular response from (visco-)elastic through plastic deformation to cell structural failure and show a significant drop in cell viability for shear stresses above &gt; 11.8 kN/m2. The shear dominant regime provides high strains for lower applied shear stress and deformation traces as a function of time contain a rich source of information including; maximum strain, elastic modulus and cell relaxation times and thus provide a number of markers for distinguishing cell types and disease stage. Our early results for leukemia cells (HL60) as a model circulatory cell and for a colorectal cancer cell line SW480 derived from primary adenocarcinoma (Dukes stage B) show that the relaxation dynamics can distinguish cell types. In this project we are seeking to establish whether this methodology can be extended to look at either 1) the role of switching mechnosensitive ion channel on /off and the relationship to cancer signalling or 2) control of pore formation for the uptake of biologicals and gene therapy.

<h2 class="heading hide-accessible">Full description</h2>

<p>The earliest start date for this project is 1 October 2020.</p>

<h2 class="heading">How to apply</h2>

<p>Formal applications for research degree study should be made online through the&nbsp;<a href="https://www.leeds.ac.uk/info/130206/applying/91/applying_for_research_degrees">University&#39;s website</a>. Please state clearly in the research information section&nbsp;that the research degree you wish to be considered for is &lsquo;Single Cell Deformation for Understanding Progression&rsquo; as well as&nbsp;<a href="https://physicalsciences.leeds.ac.uk/staff/107/professor-stephen-evans">Professor Stephen Evans</a>&nbsp;as your proposed supervisor.</p> <p>If English is not your first language, you must provide evidence that you meet the University&#39;s minimum English language requirements (below).</p> <p><em>We welcome applications from all suitably-qualified candidates, but UK black and minority ethnic (BME) researchers are currently under-represented in our Postgraduate Research community, and we would therefore particularly encourage applications from UK BME candidates. All scholarships will be awarded on the basis of merit.</em></p>

<h2 class="heading heading--sm">Entry requirements</h2>

Applicants to research degree programmes should normally have at least a first class or an upper second class British Bachelors Honours degree (or equivalent) in an appropriate discipline. The criteria for entry for some research degrees may be higher, for example, several faculties, also require a Masters degree. Applicants are advised to check with the relevant School prior to making an application. Applicants who are uncertain about the requirements for a particular research degree are advised to contact the School or Graduate School prior to making an application.

<h2 class="heading heading--sm">English language requirements</h2>

The minimum English language entry requirement for research postgraduate research study is an IELTS of 6.0 overall with at least 5.5 in each component (reading, writing, listening and speaking) or equivalent. The test must be dated within two years of the start date of the course in order to be valid. Some schools and faculties have a higher requirement.

<h2 class="heading">Funding on offer</h2>

<p><strong>Self-Funding Students</strong></p> <p><strong>Funding Eligibility</strong></p> <p><strong>UK/EU</strong> &ndash;&nbsp;Leeds Doctoral Scholarship Award paying Academic Fees and Maintenance matching EPSRC rate of &pound;15,009 per year for 3 years, Alumni Bursary for previous graduates from the University of Leeds offering 10% discount on Academic Fees, School of Physics &amp; Astronomy Scholarship award and Bell Burnell Scholarship award&nbsp;paying Academic Fees and Maintenance matching EPSRC rate of &pound;15,009 per year for 3 years</p> <p><strong>International Students</strong> &ndash;&nbsp;China Scholarship Council-University of Leeds Scholarship Award paying Academic Fees for 3 years, Alumni Bursary for previous graduates from the University of Leeds offering 10% discount on Academic Fees, School of Physics &amp; Astronomy Fee Only Scholarship award paying Academic Fees for 3 years and Bell Burnell Scholarship award&nbsp;paying Academic Fees and Maintenance matching EPSRC rate of &pound;15,009 per year for 3 years</p>

<h2 class="heading">Contact details</h2>

<p>For further information regarding your application, please contact Doctoral College Admissions by&nbsp;email:&nbsp;<a href="mailto:EMAIL@leeds.ac.uk">m</a><a href="mailto:maps.pgr.admissions@leeds.ac.uk">aps.pgr.admissions@leeds.ac.uk</a>, or by telephone: +44 (0)113 343 5057</p> <p>For further information regarding the project, please contact Professor Stephen Evans by email:&nbsp;&nbsp;<a href="mailto:S.D.Evans@leeds.ac.uk">S.D.Evans@leeds.ac.uk</a></p>


<h3 class="heading heading--sm">Linked funding opportunities</h3>