Skip to main content

Chamber Studies of the Oxidation of Key Atmospheric Intermediates

PGR-P-1615

Key facts

Type of research degree
PhD
Application deadline
Ongoing deadline
Country eligibility
International (open to all nationalities, including the UK)
Funding
Funded
Supervisors
Professor Dwayne Heard and Dr Daniel Stone
Additional supervisors
Prof Paul Seakins
<h2 class="heading hide-accessible">Summary</h2>

Air Quality, Atmosphere and Climate, Climate.

<h2 class="heading hide-accessible">Full description</h2>

<p>Product studies on the atmospheric oxidation of volatile organic compounds (VOCs) are vital in quantifying the production of tropospheric ozone (air quality and climate), toxic intermediates (air quality, health) and aerosol precursors (air quality and climate). Understanding these processes improves our predictive models of air quality (e.g. the Master Chemical Mechanism &ndash; MCM) or climate, influencing abatement strategies and environmental policy.</p> <p>The Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) in the School of Chemistry is a unique facility in the UK to study the gas phase oxidation of VOCs. HIRAC can operate over the temperatures (230 &ndash; 330 K) and pressures (0.2 &ndash; 1 bar) relevant to the Earth&rsquo;s troposphere and can detect both stable species and radical intermediates with a range of state-of-the-art instrumentation.</p> <p>A range of VOCs will be studied but we illustrate the principles and ideas via two important VOCs: methyl formate (CH3OCHO) and hydroxyacetone (CH3C(O)CH2OH).</p> <p>Methyl formate (MF) &ndash; MF is formed in the atmosphere from the oxidation of ethers and is also directly emitted as a solvent and potential biofuel. Reaction with OH is the main oxidation route and a key question is: &lsquo;Where does the OH abstract? From the CH3 or &ndash;CHO?&rsquo;. Abstraction at the CH3 group leads to formic acid HCOOH and there is currently considerable uncertainty as to the sources of acids in the atmosphere with measured quantities being much higher than model predictions. Abstraction at the CHO site is predicted to form formaldehyde (a known carcinogen). Determining the product distribution in MF oxidation should constrain the initial branching ratios and help quantify the HCOOH budget via modelling studies with the MCM.</p> <p>Hydroxyacetone (HA) &ndash; HA is formed from isoprene oxidation; isoprene is by far the largest VOC emission, hence HA is a key intermediate. Once again the initial oxidation is the abstraction of an H by the OH radical and again, this can occur at multiple sites. It is predicted that the dominant (&gt;90%) abstraction site will be the CH2 group. The resulting radical (CH3C(O)CHOH) reacts rapidly with O2 at room temperature to give methylglyoxal CH3C(O)C(O)H, a key precursor to aerosol formation. Prof Heard&rsquo;s group has developed an instrument for monitoring glyoxal (HC(O)C(O)H) and this instrument can be adapted to monitor methylglyoxal. Interestingly, previous studies have shown that at lower temperatures the methylglyoxal yield decreases and acids start to be formed. As well as experimental studies, it would be possible to use computational chemistry to explore the mechanism of such processes.</p> <p>The above systems are examples of the VOCs that could be studied and the work illustrates the kind of skills that you could develop. These skills include: instrument development, use of state-of-the-art laser and mass spectrometry systems, modelling and computational chemistry. We can focus the project around the skills that you most want to develop.</p> <p>In addition to the work in HIRAC it should be possible to carry out complementary studies using laser flash photolysis and laser induced fluorescence and to spend some time working at another chamber in either Europe or the US to gain additional experience. The supervision team have a number of joint projects and working with a large group will give you exposure to a wide range of studies relevant to atmospheric chemistry.</p>

<h2 class="heading">How to apply</h2>

<p>Formal applications for research degree study should be made online through the&nbsp;<a href="https://www.leeds.ac.uk/research-applying/doc/applying-research-degrees">University&#39;s website</a>. Please state clearly in the research information section&nbsp;that the research degree you wish to be considered for is&nbsp;Chamber Studies of the Oxidation of Key Atmospheric Intermediates as well as <a href="https://eps.leeds.ac.uk/chemistry/staff/4184/professor-paul-seakins">Prof Paul Seakins</a> as your proposed supervisor.</p> <p>If English is not your first language, you must provide evidence that you meet the University&#39;s minimum English language requirements (below).</p> <p><em>As an international research-intensive university, we welcome students from all walks of life and from across the world. We foster an inclusive environment where all can flourish and prosper, and we are proud of our strong commitment to student education. Across all Faculties we are dedicated to diversifying our community and we welcome the unique contributions that individuals can bring, and particularly encourage applications from, but not limited to Black, Asian, people who belong to a minority ethnic community, people who identify as LGBT+ and people with disabilities. Applicants will always be selected based on merit and ability.</em></p>

<h2 class="heading heading--sm">Entry requirements</h2>

Applicants to research degree programmes should normally have at least a first class or an upper second class British Bachelors Honours degree (or equivalent) in an appropriate discipline. The criteria for entry for some research degrees may be higher, for example, several faculties, also require a Masters degree. Applicants are advised to check with the relevant School prior to making an application. Applicants who are uncertain about the requirements for a particular research degree are advised to contact the School or Graduate School prior to making an application.

<h2 class="heading heading--sm">English language requirements</h2>

The minimum English language entry requirement for research postgraduate research study is an IELTS of 6.0 overall with at least 5.5 in each component (reading, writing, listening and speaking) or equivalent. The test must be dated within two years of the start date of the course in order to be valid. Some schools and faculties have a higher requirement.

<h2 class="heading">Contact details</h2>

<p>For further information please contact Prof Paul Seakins:&nbsp;<a href="mailto:p.w.seakins@leeds.ac.uk">p.w.seakins@leeds.ac.uk</a></p>